

Topics

- Types of Pesticides
- Pesticide Formulations
- Pesticide Mechanisms of Action
- Discussion of products allowed for use on Cannabis

What is a pesticide?

As defined by the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA),

"any substance or mixture of substances intended for preventing, destroying, repelling or mitigating any insect, rodent, nematode, fungus, weed or any other forms of life declared to be pests; and any substance or mixture of substances intended for use as a plant regulator, defoliant or desiccant."

Types of Pesticides

Pest Name + "CIDE"

Mixture of chemicals that effectively control a pest

PESTICIDE FORMULATIONS

Pesticide formulations

A pesticide contains:

Active ingredients (a.i.)

Inert or Other ingredients

Pesticide Formulations

- Not all products are created equal even if same ACTIVE ingredient
- Check amount (% concentration) of active ingredient
- Think about price related to concentration
- Look at all ingredients
 - Some have many different components under ACTIVE

TYPES OF FORMULATIONS (LIQUID)

- Solutions—special additives allow formulation to become soluble in water
 - RTU= Ready to Use, no dilution needed
 - C= concentrate
 - LC= Liquid concentrate

- Suspensions—very fine solid particulates are dispersed in liquid
 - Usually opaque, cloudy
 - Shake well before use
 - F=flowables

Particles in suspensions are larger than those found in solutions and can be evenly distributed by agitation in a spray tank. Without agitation the components may settle out.

- Emulsion—a special active ingredient mixed with emulsifier
 + solvent
 - "milky" appearance when mixed with water
 - EC-Emulsifiable concentrate

Wettable Powders (WP)—concentrated dusts mixed with a wetting agent

Carriers= talc/clay

TYPES OF FORMULATIONS (DRY)

Dry spreadable

- Dust—chemicals are formulated as powders and applied directly, no mixing
- Granules—coarse particle formulation (≤10mm³) applied to soil
- Pellets—coarse particle formulation (≥10mm³, uniform size)
- Baits—active ingredient is mixed with materials to attract pest

Granules (G) and pellets (P) are made in a similar way to WPs, except the dry mixture of active ingredient and inert ingredient is pressed into large pellets or granules.

FORMULATION TYPES

A = Aerosol

AF = Aqueous flowable

B = Bait

C = Concentrate

D = Dust

DF = Dry flowables (see WDG)

E = Emulsifiable concentrate

EC = Emulsifiable concentrate

F = Flowable

G = Granules

GL = Gel

L = Liquid

LC = Liquid concentrate

LV = Low volatile

M = Microencapsulated

P = Pellets

PS = Pellets

RTU = Ready-to-use

S = Solution

SP = Soluble powder (or soluble packet;

see WSP)

ULV = Ultra-low volume

W = Wettable powder

WDG = Water-dispersible granules (see DF)

WP = Wettable powder

WS = Water soluble

WSB = Water-soluble bag (see WSP:

water-soluble packet)

WSC = Water-soluble concentrate

WSL = Water-soluble liquid

WSP = Water-soluble powder (or water-

soluble packet; see WSB)

Label Examples

Liquid concentrate DoubleNickel LC

BIOFUNGICIDE

Aqueous Suspension Biofungicide/Bactericide

Net Contents: 2.5 Gallons EPA Reg. No. 70051-107 EPA Est. No. 70051-CA-001 Lot No:

Emulsifiable concentrate

Neemazad°1% EC

INSECT GROWTH REGULATOR

Kills/repels a variety of insect pests including whiteflies, caterpillars, leafminers, aphids, and diamondback moths.

FOR ORGANIC PRODUCTION

Kill or prevent the growth of fungi and spores.

FUNGICIDES

MOBILITY WITHIN THE PLANT

FUNGICIDE

Fungicide applied

Contact (Protectant)

Droplets spread out on the surface where deposited; do not move inside Leaves produced after the application are not protected

No chemical = no protection

Locally Systemic (translaminar)

Droplets spread out on and move inside leaf itssue = external and internal protection

Leaves produced after the application are not protected

No chemical = no protection

Systemic (acropetal)

Droplets spread out on and move inside leaf — tissue = external and internal protection;
Fungicide on the stem moves upwards in the xylem to new growth

Leaves produced after the application protected

No chemical = rely on fungicide via xylem

Fighting microbes with microbes

FUNGICIDE

Pathogen attacks, causes stomata to remain open

Bacillus

Produces iturins colonizes roots

Fungicides

- Try to ensure the fungi are identified properly.
 So the correct fungicide can be used.
- Air flow is important—wet leaves transfer fungus.
- Not all diseases caused by fungi can be adequately controlled by fungicides (think vascular diseases like Fusarium wilt.)

Ascochyta sp

PESTICIDES LISTED BY ACTIVE INGREDIENTS ALLOWED FOR USE ON CANNABIS

Copper Octanoate

- General biocide; Non-selective (Plant, fungi, bacteria)
- Efficacy depends on Metallic Copper amount
- Protectant: Apply before infection

ACTIVE INGREDIENT Copper Octanoate (Copper Soap). OTHER INGREDIENTS	. 99.92% 100.00%
Wetallic Copper Equivalent 0.017%	

 Brown blight, Anthracnose, Brown leaf spot, Gray mold, Powdery Mildew, Bacterial blight, Hemp canker, Yellow leaf spot

Hydrogen peroxide (Hydrogen dioxide)

- Broad spectrum fungicide
- Works by producing free radicals that attack, causing fungal cells to become brittle and leaky
- Also effective root treatment and in soils

 Fusarium wilt, Damping off, Phytopthora blight, Powdery Mildew

Monopotassium phosphate

- A mineral product that works on contact and helps plant fight pathogens, easily absorbed
- Systemic Acquired Resistance (SAR)
- Prevents fungi from making spores, destructs branches that hold spores
- Gray mold, Phytopthora blight, Powdery Mildew, Damping off, Verticillium wilt, Xanthamonas leaf spot

Mono- & di-potassium salts of phosphorous acid

 Phosphoric acid (H3PO4)mixed with a base (KOH) results in these salts

When phosphoric acid (H₃PO₄) is neutralized with a base, such as potassium hydroxide (KOH) or ammonium hydroxide (NH₄OH), a salt results. The salt of phosphoric acid is a phosphate. For example:

Mono- & di-potassium salts of phosphorous acid

- Works on contact
- Direct toxicity to the plant pathogen, aided by natural plant defenses (Systemic Acquired Resistance)
- Damping off, Phytopthora blight, Xanthamonas leaf spot

Neem oil

- Prevents the spread of fungus, not curative
- Degrades rapidly under UV light

Powdery mildew, Gray mold, Root & crown rot

Sulfur

- Contact and protectant fungicide
- Careful with applications if using oils
- Do a phytotoxicity test

Powdery Mildew

A fungicide that contains a living organism (usually bacteria or fungi) as the active ingredient

BIOFUNGICIDES ACTIVE INGREDIENTS

Bacillus amyloliquefaciens (strain D747)

- Kills pathogenic organisms on foliage and other plant parts by producing antibiotic compounds (iturins) which disrupt pathogen cell wall production
- Aids plants defense by competitive exclusion
- Aids plant in dealing with abiotic stress
- Fusarium: wilt, canker, foot & root rot,
 Damping off

Bacillus pumilus (strain GHA 180)

- Produces iturins
- Colonizes roots
- Fusarium: wilt, canker, foot & root rot, Damping off

Bacillus subtilis (Strain QST713)

- Produces antibiotic compounds (iturins)
- Fungicidal activity on many pathogens; colonizes and attaches to fungal pathogens
- Symbiosis with plants, feeds on plant exudates, leaving none for the pathogens

Brown blight, Anthracnose, Gray mold,
 Phytopthora blight, Powdery Mildew, Hemp canker, Yellow leaf spot, Xanthamonas leaf spot

Rhamnolipid Biosurfactant

- From a bacteria,
 Pseudomonas spp.
- Biosurfactants

- Causes cell lysis and growth inhibition of fungi and bacteria
- Aides absorption of fertilizers and nutrients through roots
- Cell lysis in: Phytopthora blight, Damping off

Trichoderma asperellum (strain ICC 012)

- "Fighting fungus"
- Competes with pathogens
- No toxic affects or resistance noted

 Controls many soil born pathogens:
 Damping off, Phytopthora blight, Hemp canker, Root rot, Verticillium wilt

25(b) minimum risk pesticides from the allowed pesticide list on cannabis

FUNGICIDES

Cinnamon oil

- Aids in controlling pathogen growth
- Contact pesticide

 Brown blight, Anthracnose, Gray mold, Powdery Mildew, Damping off

Citric Acid

- HO

 OH

 HO

 Reference: ChemSpider
 The free chemical database
- Contact pesticide
- Low toxicity
- Aids plant in defense

- Can decrease incidence of Powdery Mildew
- IF using as insecticide must be directly applied to pest

CAUTION: May cause mild skin and/or eye irritation, protective clothing and eyewear recommended.

Active Ingredients	By Weight
Citric Acid	0.05%
Inert Ingredients	
Potassium Sorbate	0.01%
Yeast(Enzymes)	44.08%
Filtered Water	55.86%
Total	100.00%

DANGER

Avoid contact with skin and eyes. In case of contact, immediately flush eye or skin with water.

Active Ingredient: 99% Citric Acid Inert ingredients: 1% dextrose

Clove Oil

- Effective on several strains of fungi, yeasts, bacteria, nematodes, thrips, aphids and mites.
- Fast acting contact
- Little or no residual activity
- May be phytotoxic to new growth
- Anthracnose, Damping off, Gray mold, Powdery Mildew, Yellow leaf spot

Geraniol

- Primary part of rose and citronella oil Small quantities in geranium, lemon
- Slows spore and mycelium growth

Brown blight, Brown leaf spot, Fusarium blight, Damping off

Horticultural Oils

- Corn
- Cottonseed
- Sesame
- Soybean

- Phytotoxic at high temperatures!
- Powdery Mildew

Sodium Laurel Sulfate

- Anionic surfactant—this ingredient has a negative charge
 - Negatively charged soap
- Moderate preventative
- Note: Could cause problems with sprayers (foaming)

Effective on: Powdery mildew

Lemongrass oil

Fungicidal properties (kills fungus)

 Effective on: Damping off, Gray Mold

Thyme oil

- Inhibits fungal growth
- Works on contact

 Damping off, Gray Mold, Powdery Mildew, Yellow leaf spot, Hemp canker

Mechanisms of Action

INSECTICIDE

Insecticide—mode of dose transfer

Ingested

Repellent

Fumigant

Lure and kill

Nerve impulse background information

INSECTICIDE MODE OF ACTION

Neurotransmission within a Neuron 1 pest

- Electrical impulse travels from neuron 1 to another neuron
- When it reaches the synapse, jumps the gap
- Binds to receptors on neuron 2 continues impulse or completes action

Axon Neurotransmitter Molecules

Insecticide Mode of Action (MoA)

Insecticide Resistance Action Committee (IRAC): 28 MoA classification

Inhibit enzyme that breaks down neurotransmitter

MoA 1 Acetylcholinesterase:

Carbamates, OP (act in the

synaptic gap)

MoA 2 GABA blocker:

Cyclodienes (block GABA channel)

MoA 3 Sodium Channel:

Pyrethrins (act on receiving neuron)

Nicotinic acetylcholine receptor

MoA 4: Neonicotinoids,

MoA 5:Spinosyn

(mimic neurotransmitter)

MoA 3 Sodium Channel: Pyrethrins

Neonicotinoids Mode of Action (MoA 4)

Normal Neurotransmission Acetylcholine Receiving Transmitting Neuron Neuron AChE

Acetylcholinesterase (AChE) breaks down acetylcholine (ACh), preventing overstimulation and blockage of acetylcholine receptors

Acetylcholinesterase cannot break down neonicotinoids (ACh receptor agonists), leading to paralysis (due to blockage of ACh receptors)

MoA 11:
Microbial
disruptors of
insect midgut
membranes
Bacillus
thuringiensis

Scanning electron microscope image of Bt showing whole bacteria (green), endospores (violet), and crystal protein toxins (red).

Within minutes, the toxin binds to specific receptors in the gut wall, and the caterpiller stops feeding.

Within hours, the gut wall breaks down allowing spores and normal gut bacteria to enter body cavity.

Dead cabbage looper. Those killed by BT may turn black and/or become shrivelled.

Are pesticides that are created to kill, harm, repel or mitigate one or more species of insect.

INSECTICIDES

Insecticides

Before use identify the pest correctly.

Read the label to ensure the insecticide you want to use controls the pest in question.

PESTICIDES LISTED BY ACTIVE INGREDIENTS ALLOWED FOR USE ON CANNABIS

Azadirachtin—neem seeds extracts

- Contact action
- Slows growth, feeding, reproduction and repels insects.
- No resistance has been reported
- Aphids, Caterpillar, Fungus gnats, Leaf miners, Mealy bugs, Thrips, White fly (also controls immature insect forms)

Capsicum Oleoresin Extract

- Active ingredient from chili peppers
- Primarily used as a repellent and irritant; weakens cuticles(exoskeleton) of immature stages of insect and mite pests.

Mites, Thrips, Leafhoppers, Whiteflies

Diatomaceous Earth

- Comes from fossilized remains of tiny, aquatic organisms (diatoms)
- Usually a dust but may be a wettable powder
 - Especially careful with PPE
- Death by cutting exoskeleton and drying out
- No known resistance and minimal toxicity

Crawling insects

Kaolin

- Natural desiccant, feeding deterrent
- Sticky coat on leaves
- As soon as washed off not effective

Aphids, Thrips

Neem Oil

- Dries out & suffocates pests
- Contact activity ONLY
- Degrades rapidly under UV light

Aphids, Caterpillar, Fungus gnats, Spider mites, Thrips

Mineral Oil

- Smothers insects
- Minimal harm to plants, actually increases respiration
- Check label for UR or Unsulfonated Residue
 - Higher the rating lower the amount of sulfur, could cause phytotoxicity
- Aphids, mites and soft bodied insects
- Powdery Mildew

Active Ingredient:	
Mineral Oil*	80.0%
Other Ingredients	20.0%
Total	100.09/
*Contains petroleum distilla	tes.
Unsulfonated Residue of Min	

Piperonyl butoxide

- Synergist with Pyrethrins
- Prevents insect from being able to remove(digest) toxin=pesticide
- Derived from sassafras oil
- Some toxicity: moderately to fish and highly toxic to aquatic organisms
- Aphids, Caterpillar, Fungus gnats, Thrips, White flies

Potassium laurate

- Penetrates insects body and disrupts cell membranes; causing insect to dehydrate and die
- No resistance.
- Product must be wet to be active
- May harm some beneficial insects.

 Selective for soft bodies insects: Whiteflies, Aphids, Thrips, Caterpillars, Spider mites

Pyrethrins

Reference: ChemSpider
The free chemical database

- Chrysanthemum
- Works on contact, stomach poison.
- Break down rapidly in light
- Aphids, Caterpillar, Fungus gnats, Mites,
 White flies

- Reference: ChemSpider
 The free chemical database

 Na

 Fe
- Interacts with oxygen transport in blood and eventually causes death
- Contact and digestive poison
- EDTA causes iron to be released in digestive system

Snails and Slugs

25(b) Active Ingredients

INSECTICIDE

Essential Oils

 Cedar, Cinnamon, Citronella, Clove, Garlic, Geranium, Lemongrass, Peppermint, Rosemary, Thyme

- Most work by disrupting the insect's neurotransmitter
- Repellent
- Reapplication necessary

EO by pest

Spider Mites

Cinnamon, Citronella, Garlic,

Peppermint

Fungus gnats

Cinnamon, Clove, Geranium, Peppermint, Rosemary

Aphids

Cinnamon, Clove, Garlic, Peppermint, Rosemary, Thyme

White fly

Peppermint, Rosemary, Thyme

Cinnamon, Clove, Garlic, Peppermint, Rosemary

Biological Active Ingredients

INSECTICIDE

Beauveria bassiana strain GHA

- Contact action
- Slow acting but effective
- Aggressive fungal parasite
- Immature & adult

 Whiteflies (nymphs & adults), thrips, aphids

Bacillus thuringiensis spp. Aizawai Bacillus thuringiensis spp. Kurstaki

- Must be ingested
- Works best at curative stage

 Caterpillars and many vegetable pests

Chromobacterium Sub Strain PRAA4-1 Cells

- Contains fermentation solids.
- Isolated from soil under an eastern hemlock
- Works as a stomach poison upon ingestion.
- No systemic activity.
- Toxic to bees exposed to direct treatment or residues

Thrips, Mealy bugs, Spider mites, Caterpillar

Myrothecium verrucaria

- Inactive (killed) fungus and mixture in which it was grown
- a cellulose decomposer

- Biological nematicide
 - Active on plant pathogenic nematodes
 - Kills by paralyzing muscles for feeding and movement.
 - Causes disorientation
 - Prevents egg hatching & development

GROWTH REGULATORS

Insect Growth Regulator

- Azadiractin—insects unable to molt, or go next stage of life cycle.
- Slows growth in general.
- Works on all instar stages of insects

Plant Growth Regulator

- Cytokinin—promote cell division in roots & shoots
- Harpin Alpha Beta—activates immune system (growth & defense genes)
- IBA (Indole-3-Butyric Acid)— (auxin)vigorous root formation, development & increases cell elongation
- Gibberellins—helps cell division, elongation in stems & leaves

Plant Growth Regulator--Promoters

(IBA (Indole-3-Butyric Acid)

Plant Growth Regulator

- Harpin Alpha Beta activates immune system (growth & defense genes)
- Apply before pathogens, takes a few days to induce response

PESTICIDE RESISTANCE

Pesticide Resistance

 Genetically acquired ability of an organism to survive a pesticide application at doses that once killed most individuals of the same species

A single pest species can react dramatically differently to the same dose of an insecticide, depending on the strain.

Pesticide Resistance First Spray

Legend

Metabolic Resistant Insect

Behavioral Resistant Insect

Pest

Third Spray Photo courtesy: Dr. Abida Nasreen

Remember to follow the RULES

- •R = Rotate pesticides (use different groups)
- •U = Use labeled rates
- •L = Limit total number of applications
- •E = Educate yourself about pesticide groups and management tactics.
- S = Select pesticides that have multiple modes of action, tank mixes

Fungicides Mode of Action List

- 13 DIFFERENT MoA CATEGORIES
 - 76 codes—combination of letters & numbers that identify the cross resistance behavior
 - Look for group number on label

Flowable Fungicide

Broad spectrum fungicide for control of plant diseases

GROUP 11 FUNGICIDES

Total: 100.0%

FRAC Code on the Quadris label

Insecticide Mode of Actions (28 MoA)

- Categorizes insecticides based on MoA & likelihood of resistance becoming a problem
- Look for group number on front of the label
 - e.g. GROUP 3A INSECTICIDE

Take-Aways

- Know the pesticide you are using.
 - Why to use? When to use? How to use?
- Think about concentration of active ingredient
- Follow the RULES

Questions? More Information?

Contact Amanda Terry

amanda.terry@state.co.us

303.869.9053